Using an Hebbian Learning Rule for Multi-Class SVM Classifiers
نویسندگان
چکیده
منابع مشابه
Multi-Class SVM Learning using Adaptive Code
Classification of objects in computer vision is done mostly without any knowledge about multiple class memberships. In this master thesis several learning algorithms based on Support Vector Machines and similar approaches regarding multiple class memberships are explored. Recognition performance and robustness of the algorithms are tested with small quantities of training objects, making all le...
متن کاملLearning Binary Classifiers for Multi-Class Problem
One important idea for the multi-class classification problem is to combine binary classifiers (base classifiers), which is summarized as error correcting output codes (ECOC), and the generalized Bradley-Terry (GBT) model gives a method to estimate the multi-class probability. In this memo, we review the multi-class problem with the GBT model and discuss two issues. First, a new estimation algo...
متن کاملAn active learning-based SVM multi-class classification model
Traditional multi-class classification models are based on labeled data and are not applicable to unlabeled data. To overcome this limitation, this paper presents a multi-class classification model that is based on active learning and support vector machines (MC_SVMA), which can be used to address unlabeled data. Firstly, a number of unlabeled samples are selected as the most valuable samples u...
متن کاملA fast multi-class SVM learning method for huge databases
In this paper, we propose a new learning method for multi-class support vector machines based on single class SVM learning method. Unlike the methods 1vs1 and 1vsR, used in the literature and mainly based on binary SVM method, our method learns a classifier for each class from only its samples and then uses these classifiers to obtain a multiclass decision model. To enhance the accuracy of our ...
متن کاملLearning Classifiers Using Hierarchically Structured Class Taxonomies
We consider classification problems in which the class labels are organized into an abstraction hierarchy in the form of a class taxonomy. We define a structured label classification problem. We explore two approaches for learning classifiers in such a setting. We also develop a class of performance measures for evaluating the resulting classifiers. We present preliminary results that demonstra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational Neuroscience
سال: 2004
ISSN: 0929-5313
DOI: 10.1023/b:jcns.0000044873.20850.9c